Orthodontics
World Small Animal Veterinary Association World Congress Proceedings, 2004
Cecilia Gorrel, BSc, MA, Vet MB, DDS, MRCVS Hon, FAVD, DEVDC
Pilley, Lymington, Hampshire, United Kingdom

Orthodontics is defined as the branch of dentistry concerned with the supervision, guidance and correction of the growing and mature dentofacial structures, including those conditions that require movement of teeth.

Malocclusion (abnormalities in the position of the teeth) is common in the dog, but also occur in cats. It can result from jaw length and/or width discrepancy (skeletal malocclusion), from tooth malpositioning (dental malocclusion) or a combination of both. Orthodontics can be used to treat certain types of malocclusion.

The development of the occlusion is determined by both genetic and environmental factors. It is known that jaw length; tooth bud position and tooth size are inherited1. It is also known that the development of the maxilla, the mandible and the teeth are independently regulated genetically1. Disharmony is the regulation of these three structures result in malocclusion. Alteration of jaw growth by hormonal disorders, trauma or functional modifications may result in a skeletal malocclusion2. Although tooth bud position is inherited, various events during development and growth may alter the definitive tooth position. It has been claimed that at least fifty percent of all types of malocclusion are acquired and have no genetic cause3,4. There is no data to support such a claim in dogs or cats. Little research has been performed and there are no large epidemiological studies available. To date, there is no precise list of inherited or acquired malocclusion. Specific genetic mechanisms regulating malocclusion are unknown. However, a polygenic mechanism is likely and explains why not all siblings in successive generations are affected by a malocclusion to the same degree, if affected at all. With a polygenic mechanism, the severity of clinical signs is linked to the number of defective genes.

The most reasonable approach suggested5,6 to evaluate whether a malocclusion is hereditary or acquired is as follows:

 Skeletal malocclusion is considered inherited unless a developmental cause can be reliably identified.

 Pure dental malocclusion, unless known to have a breed or family predisposition, should be given the benefit of a doubt and not be considered inherited.

Prevention is always better than treatment. Early recognition of a problem is essential to avoid discomfort and pain to the animal and prevent the development of severe pathology. Malocclusion affecting the primary dentition may require interceptive orthodontics. Malocclusion affecting the permanent dentition may need no treatment at all if they are not causing the animal discomfort or causing any oral pathology. Malocclusion causing discomfort and pathology need treating. The treatment options include orthodontics; but in many instances tooth shortening (endodontic therapy must be performed if the pulp is involved in the shortening) or extraction are preferable. The aim of any treatment is primarily to make the animal comfortable; aesthetics are a secondary consideration.

In man, medical (predisposition to periodontal diseases), functional (alteration of mastication or speech) and psychological (alteration of aesthetics) problems relating to a malocclusion are the primary reason for orthodontic treatment. In human orthodontics the aetiology, i.e., whether hereditary or acquired, of the malocclusion is not a consideration when making decisions regarding treatment. In pet animals, aesthetics and ethical concerns are linked, and treatment for the sole purpose of being able to 'show' dogs or cats cannot be encouraged. It is essential to determine if the presenting malocclusion is hereditary or not. Orthodontic correction of a malocclusion is contraindicated where the malocclusion is hereditary, unless the animal is also neutered. The rationale for this is to avoid spread of inherited malocclusion within a breed. Some countries already have legislation relating to this issue.

Orthodontic movement of teeth can be described as prolonged application of pressure to the tooth, resulting in movement of the tooth as the bone around it remodels. Bone on the compression side undergoes lysis allowing the tooth to move and bone formation on the tension side ensures that the tooth stays in the new position. In the ideal situation bone lysis and bone formation should be in equilibrium. Usually, there is an imbalance and lysis occurs more rapidly. A retention phase maintaining the tooth in the new position while allowing time for bone formation is, therefore, necessary in many cases.

The optimal orthodontic force is one that moves teeth rapidly without resulting in structural damage as well as one that causes the least amount of discomfort or pain. Factors that need to be considered for any orthodontic appliance are the magnitude of the force, the distribution of the force and the duration of the force. The ideal force is a light continuous force. Heavy continuous forces are most damaging and should be avoided. Apart from the orthodontic forces applied, normal growth processes, and forces from the lips, cheeks and tongue resting on the teeth will determine the outcome of the treatment. Possible complications to orthodontic movement of teeth include pulpal disease, external root resorption, tooth mobility and pain. In short, the outcome of an orthodontic procedure is rarely predictable and needs frequent monitoring based on clinical signs and radiography.

References

1.  Stockard CR (1941): The genetic and endocrinic basis for differences in form and behaviour. The American anatomical memoirs no 19, The Wistar Institute of Anatomy and Biology, Philadelphia, USA.

2.  Hennet PR, Harvey CE (1992a): Craniofacial development and growth in the dog. Journal of Veterinary Dentistry 9 (2), 11.

3.  Beard G (1989): Anterior crossbite: interceptive orthodontics for prevention, Maryland bridges for correction. Journal of Veterinary Dentistry 6 (2), 14.

4.  Shipp AD, Fahrenkrug P (1992): Practitioner's Guide to Veterinary Dentistry. Dr Shipp's Laboratories, Beverley Hills, USA.

5.  Hennet PR, Harvey CE (1992b): Diagnostic approach to malocclusion in dogs. Journal of Veterinary Dentistry 9 (3), 23.

6.  Hennet PR (1995): Orthodontics in Small Carnivores. In; Crossley DA, Penman S (eds) Manual of Small Animal Dentistry, British Small Animal Veterinary Association, Gloucestershire, UK, pp182-192.

Speaker Information
(click the speaker's name to view other papers and abstracts submitted by this speaker)

Cecilia Gorrel, BSc, MA, Vet MB, DDS, MRCVS Hon, FAVD, DEVDC
Pilley, Lymington
Hampshire, UK


MAIN : Dentistry : Orthodontics
Powered By VIN

Friendly Reminder to Our Colleagues: Use of VIN content is limited to personal reference by VIN members. No portion of any VIN content may be copied or distributed without the expressed written permission of VIN.

Clinicians are reminded that you are ultimately responsible for the care of your patients. Any content that concerns treatment of your cases should be deemed recommendations by colleagues for you to consider in your case management decisions. Dosages should be confirmed prior to dispensing medications unfamiliar to you. To better understand the origins and logic behind these policies, and to discuss them with your colleagues, click here.

Images posted by VIN community members and displayed via VIN should not be considered of diagnostic quality and the ultimate interpretation of the images lies with the attending clinician. Suggestions, discussions and interpretation related to posted images are only that -- suggestions and recommendations which may be based upon less than diagnostic quality information.

CONTACT US

777 W. Covell Blvd., Davis, CA 95616

vingram@vin.com

PHONE

  • Toll Free: 800-700-4636
  • From UK: 01-45-222-6154
  • From anywhere: (1)-530-756-4881
  • From Australia: 02-6145-2357
SAID=27